提升微波固放电路电流承载力的复合膜层结构

    Composite film layer structure to enhance the current carrying capacity of microwave solid-state power amplifier circuits

    • 摘要: 随着卫星应用水平的不断提高,星载微波固态功率放大器(固放)的应用功率不断增大,对于固放电路的电流承载力提出了更加严苛的要求。基于对星载微波固放电路电流承载力需求的分析,文章提出一种提升陶瓷基微波固放电路电流承载能力的新型复合膜层结构,并对基于该膜层结构制作的薄膜电路进行了线宽精度、表面电阻、膜层附着力等工艺指标和电流承载力的详细测试,相比传统膜层结构,此复合膜层结构可显著增强电路线条的导热能力,提升固放电路的电流承载力和应用可靠性。测试结果表明,使用NiCr-Au-Cu-Ni-Au复合膜层结构,高纯氧化铝基板上电路可在9A电流下稳定工作(表面膜层完整和表面存在明显划伤结果相同),高介电常数基板上0.4mm线条可耐受5A电流,膜厚控制范围10μm~13μm,100μm线宽精度15μm,膜层附着力大于2kg/mm2,Φ25μm金丝的破坏性键合拉力值>3.5g,250μm金带的破坏性键合拉力值>100g,满足了宇航工程的高可靠应用要求。

       

      Abstract: With the continuous improvement of satellite application level,the application power of satellite-based microwave SSPA (solid-state power amplifier) is increasing, and the current carrying capacity of the SSPA circuit has put forward more stringent requirements. Based on the analysis of the satellite-based microwave SSPA circuit, this paper proposes a new composite film layer structure to enhance the current carrying capacity of ceramic-based microwave solid-state circuits, and conducts detailed tests on the line width accuracy, surface resistance, film adhesion and other process indicators and current carrying capacity of thin-film circuits made based on this film layer structure. Compared with the traditional film layer structure, this composite film layer structure can significantly enhance the thermal conductivity of circuit lines and improve the current carrying capacity and application reliability of solid-state circuits.The test results show that using NiCr-Au-Cu-Ni-Au composite film structure, the circuit on high-purity alumina substrate can work stably at 9A current(the same result for surface film layer integrity and obvious surface scratches) ,0.4mm lines on high dielectric constant substrate can withstand 5A current, film control range 10-13 microns,100 microns line width precision 15 microns, film adhesion force is greater than 2kg/mm2,25 microns of gold wire destructive bonding tension value greater than 3.5g,250 gold tape microns of destructive bonding tension greater than 100g, to meet the high-reliability requirements of aerospace engineering applications.