具有欺骗攻击的主从神经网络混合事件触发同步控制

    Hybrid event-triggered synchronous control on master-slave neural networks with deception attacks

    • 摘要: 文章提出了一种针对受到欺骗攻击的主从神经网络的混合事件触发同步控制方法。所提出的方法采用以伯努利分布为特征的混合事件触发方案,通过仅在必要时传输数据来减轻通信负担并处理不可预测的网络环境。记忆事件触发机制可以在系统响应状态的峰值和低谷期间传输更多的数据。通过考虑实际情况中的不确定性,将网络诱导时滞和随机发生的欺骗攻击纳入一个统一的框架,并构建了相应的李雅普诺夫泛函。其次,使用李雅普诺夫理论,推导出一个稳定性判据。最后,通过数值算例验证了所提出方法的有效性。

       

      Abstract: This paper presents a hybrid event-triggered synchronous control method for a master-slave neural network subject to deception attacks. The proposed method employs a hybrid event-triggered scheme based on Bernoulli distribution to reduce the communication burden and handle the unpredictable network environment by transmitting data only when necessary. Notably, the memory event trigger mechanism can transmit more data during the peak and bottom of the system’s response state. To account for uncertainties in the system, including network-induced delay and randomly occurring deception attacks are developed within a unified framework and the corresponding Lyapunov-Krasovskii functional (LKF) is constructed. A stabilization criterion is then derived using Lyapunov theory. Numerical simulations demonstrate the effectiveness of the proposed method.