分频段优化回流孔配置抑制22层PCB阻抗失配

    Adaptive reflow hole optimization suppresses 22-layer PCB impedance mismatch

    • 摘要: 本文针对22层高密度PCB中高速信号换层过孔的阻抗失配问题,提出一种分频段优化的回流过孔配置方法。通过建立三维全波电磁仿真模型,系统分析了0~77 GHz范围内回流过孔位置、数量及排布方式对插入损耗、回波损耗和时域反射特性的影响规律。实验结果表明,在0~30 GHz和55~60 GHz频段,采用双回流过孔对称布局(间距55 mil,方位角90°)可使回波损耗降低32%;而在30~77 GHz高频段,6~10个回流过孔曲线分布方案可将插入损耗抑制在1.5 dB以下。研究进一步揭示了回流过孔间距与阻抗波动的非线性关系,提出基于频段特性的分层优化策略,为5G通信和高速计算平台PCB设计提供理论指导。

       

      Abstract: In this paper, we propose a frequency band adaptive return vias optimization configuration method for the impedance mismatch of high-speed signal layer changing vias in 22-layer high-density PCBs. By establishing a three-dimensional full-wave electromagnetic simulation model, we systematically analyze the influence of the position, number, and arrangement of the return vias on the S-parameters and time-domain reflection characteristics in the range of 0~77 GHz. The experimental results show that in the frequency bands of 0~30 GHz and 55~60 GHz, the symmetric layout of two return vias (55 mil spacing and 90° azimuth) can reduce the return loss by 32%, while in the high-frequency band of 30~77 GHz, the curvilinear distribution scheme of 6~10 return vias can suppress the insertion loss to below 1.5 dB. The study further reveals the nonlinear relationship between return vias spacing and impedance fluctuation, and proposes a hierarchical optimization strategy based on band characteristics, which provides theoretical guidance for PCB design in 5G communication and high-speed computing platforms.