• 中国核心期刊遴选数据库
  • 中国学术期刊综合评价数据库(CAAJED)
  • 中国期刊全文期刊数据(CJED)
  • 中文科技期刊数据库(CSTJ)
  • 中国知网、万方数据、维普数据、超星网络等平台全网搜索
WANG Yujia, FAN Yesen, LI Yang, LIU Rongrui, AN Ning, JI Yuandong. Analysis of thermal induced vibration of large space membrane antennas in orbit[J]. Space Electronic Technology, 2025, 22(2): 57-67. DOI: 10.3969/j.issn.1674-7135.2025.02.007
Citation: WANG Yujia, FAN Yesen, LI Yang, LIU Rongrui, AN Ning, JI Yuandong. Analysis of thermal induced vibration of large space membrane antennas in orbit[J]. Space Electronic Technology, 2025, 22(2): 57-67. DOI: 10.3969/j.issn.1674-7135.2025.02.007

Analysis of thermal induced vibration of large space membrane antennas in orbit

More Information
  • Received Date: January 16, 2025
  • Revised Date: February 10, 2025
  • Large space membrane antennas offer advantages in terms of light weight and large folding-to-deployment ratios, making them an important direction for the development of space deployable antennas. However, when membrane antennas enter and exit the Earth’s shadow area, they experience rapid changes in thermal radiation that cause thermal deformation and thermally induced vibrations, which can affect their performances. This paper is based on the theories of heat transfer and structural dynamics, and uses NX and ANSYS software to establish a thermal induced vibration model for thermal induced vibrations in large space membrane antennas, analyzing temperature field changes, thermal induced vibrations, and the factors influencing these vibrations when entering the earth's shadow area. Research has shown that the size and damping of antenna structures, prestressing of tension ropes, and material parameters of thin film arrays have a significant impact on the thermal induced vibration of large membrane antennas. By carefully selecting appropriate structural and material parameters, thermal induced vibrations can be effectively suppressed, providing important reference and support for the design for large space membrane antennas and suppression of thermal induced vibration.

  • [1]
    LIU T, WANG X H, QIU X M, et al. Theoretical study on the parameter sensitivity over the mechanical states of inflatable membrane antenna[J]. Aerospace Science and Technology,2020,102:105843. DOI: 10.1016/j.ast.2020.105843
    [2]
    刘朋博, 张华振, 徐婷, 等. 一种用于空间结构的新型聚酰亚胺薄膜的力学特性[J]. 空间电子技术,2022,19(1):89-94. DOI: 10.3969/j.issn.1674-7135.2022.01.015
    [3]
    LIU X, LV L L, CAI G P. Hybrid control of a satellite with membrane antenna considering nonlinear vibration[J]. Aerospace Science and Technology,2021,117:106962. DOI: 10.1016/j.ast.2021.106962
    [4]
    GARCÍA L P, FURANO G, GHIGLIONE M, et al. Advancements in onboard processing of synthetic aperture radar (SAR) data: enhancing efficiency and real-time capabilities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2024,17:16625-16645. DOI: 10.1109/JSTARS.2024.3406155
    [5]
    DE ZWART M, STEPHENS D. The space (innovation) race: the inevitable relationship between military technology and innovation[J]. Melbourne Journal of International Law,2019,20(1):1-28.
    [6]
    谢超, 张恩杰, 严飙, 等. 空间可展薄膜阵列天线构型设计与验证[J]. 机械工程学报,2024,60(3):11-19.
    [7]
    LIU Z Q, QIU H, LI X, et al. Review of large spacecraft deployable membrane antenna structures[J]. Chinese Journal of Mechanical Engineering,2017,30(6):1447-1459. DOI: 10.1007/s10033-017-0198-x
    [8]
    薛明德, 向志海. 大型空间结构热-动力学耦合分析方法综述[J]. 力学学报,2022,54(9):2361-2376. DOI: 10.6052/0459-1879-22-171
    [9]
    THORNTON E A, KIM Y A. Thermally induced bending vibrations of a flexible rolled-up solar array[J]. Journal of Spacecraft and Rockets,1993,30(4):438-448. DOI: 10.2514/3.25550
    [10]
    HAWLEY S A. Hubble space telescope solar array concerns and consequences for servicing mission 2[J]. Journal of Spacecraft and Rockets,2016,53(1):15-24. DOI: 10.2514/1.A33388
    [11]
    LI J L, YAN S Z. Thermally induced vibration of composite solar array with honeycomb panels in low earth orbit[J]. Applied Thermal Engineering,2014,71(1):419-432. DOI: 10.1016/j.applthermaleng.2014.07.015
    [12]
    张军徽, 方瑞颖, 武娜, 等. 条带式太阳帆航天器的热致结构动力学响应[J]. 宇航学报,2020,41(10):1295-1304. DOI: 10.3873/j.issn.1000-1328.2020.10.007
    [13]
    王杰, 余晔, 张涛. GEO轨道太阳帆热致干扰力矩分析[J]. 中国空间科学技术(中英文),2024,44(3):167-173.
    [14]
    LU G Y, ZHOU J Y, CAI G P, et al. Studies of thermal deformation and shape control of a space planar phased array antenna[J]. Aerospace Science and Technology,2019,93:105311. DOI: 10.1016/j.ast.2019.105311
    [15]
    COX K, DAVIS B, VANHALLE R, et al. Flight build of a furled high strain composite antenna for CubeSats[C]//AIAA. 2018 AIAA Spacecraft Structures Conference. Kissimmee: AIAA, 2018: 1678.
    [16]
    LIU J G, NI H J, GAO H, et al. Research and application of ultrathin polyimide films[J]. Spacecraft Environment Engineering, 2014, 31(5): 470-475.
    [17]
    陶家生, 林骁雄, 钟红仙, 等. 大型GEO通信卫星平台转移轨道段热分析[J]. 航天器环境工程,2021,38(5):495-502. DOI: 10.12126/see.2021.05.001
    [18]
    闵桂荣, 郭舜. 航天器热控制[M]. 2版. 北京: 科学出版社, 1998: 83-84.
    [19]
    王杰, 聂云清, 吴军, 等. 一种冷热交变环境下太阳帆应力保持方法[J]. 宇航学报,2022,43(6):732-742. DOI: 10.3873/j.issn.1000-1328.2022.06.004
    [20]
    吕娟霞, 蔡国平, 彭福军, 等. 薄膜天线结构模态参数的在轨辨识[J]. 振动与冲击,2018,37(6):82-85.
    [21]
    陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 342.
    [22]
    王杰, 李东旭, 蒋建平, 等. 星载大型可展桁架式薄膜结构在轨热分布特性研究[J]. 测绘通报,2014(增刊1):9-14.
    [23]
    倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989: 240.
    [24]
    安翔, 冯刚. 某空间站太阳电池阵中央桁架热-结构耦合动力学分析[J]. 强度与环境,2005,32(3):8-13,38. DOI: 10.3969/j.issn.1006-3919.2005.03.002
    [25]
    邵琦, 陆一凡, 史创, 等. 空间薄膜结构刚柔耦合非线性动力学分析[J]. 中国空间科学技术,2022,42(1):47-56.
    [26]
    LIU X, CAI G P. Thermal analysis and rigid‐flexible coupling dynamics of a satellite with membrane antenna[J]. International Journal of Aerospace Engineering,2022,2022:3256825.
    [27]
    LIU C, REN C, LIU S, et al. Thermally induced vibration of photovoltaic honeycomb-based-thermoelectric hybrid device[J]. Thin-Walled Structures,2025,207:112692. DOI: 10.1016/j.tws.2024.112692
    [28]
    CAO Y T, CAO D Q, HE G Q, et al. Thermal alternation induced vibration analysis of spacecraft with lateral solar arrays in orbit[J]. Applied Mathematical Modelling,2020,86:166-184. DOI: 10.1016/j.apm.2020.05.008
    [29]
    周静, 冯彦军, 孙伟, 等. 哈勃望远镜太阳翼扰动问题识别及其修复历程研究[C]//上海航天技术研究院. 第十七届上海航天科技论坛暨上海市宇航学会2022学术年会论文集. 上海: 上海航天技术研究院, 2023: 212-219.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint