Citation: | ZHENG Li, HAO Baoliang, WANG Juan, ZHANG Yancheng, LI Zilin, WANG Guangqiang, CHEN Ran, GENG Weinan, XU Guang, ZHANG Lixia. The research of high-efficiency Q band helix traveling wave tubes for communication[J]. Space Electronic Technology, 2025, 22(1): 109-117. DOI: 10.3969/j.issn.1674-7135.2025.01.013 |
In order to meet the rapid needs of millimeter-wave spectrum, such as satellite communication and wireless communication, the physical characteristics and design techniques of helix Q-band traveling wave tubes such as high power, high efficiency, high gain and nonlinearity are studied in detail. Through the theoretical analysis of the wavelength-size-matching effect, the dispersion characteristics and coupling impedance of the slow wave structure are studied, a double tape technique is adopted to improve the electronic efficiency while taking into account the high gain and good nonlinearity. The design method of main attenuation, input secondary attenuation and cut-off is adopted to effectively suppress the backward-wave oscillation to make the traveling wave tube work stably. And a five-stage collector is designed on the basis of the electronic spectrum analysis after interaction, and the efficiency of the collector reaches 90%, which promotes the improvement of the total efficiency of the traveling wave tube. Using the above design methods, two kinds of Q-band helix communication traveling-wave tubes were manufactured, and the test results are as follows: Type A high-power traveling-wave tube, Q-band (bandwidth 2 GHz), output power up to 125 W, total saturation efficiency up to 57%, saturation gain 45 dB, phase shift less than 49°, weight 460 g. Type B miniaturized traveling-wave tube, Q-band (bandwidth 4.5 GHz), saturated power 65 W, saturation total efficiency 55%, saturation gain 46 dB, phase shift less than 45°, weight 350 g. The two helix Q-band traveling wave tubes meet the requirements of high efficiency, high linearity, high gain, miniaturization and other comprehensive indicators of communication, and the test parameters exceed the latest public reported products, showing excellent comprehensive performance. The design method proposed in this paper provides an important reference for the research of Q band and higher frequency helix communication traveling-wave tubes.
[1] |
洪伟, 余超, 陈继新, 等. 毫米波与太赫兹技术[J]. 中国科学: 信息科学,2016,46(8):1086-1107.
|
[2] |
周颖, 康丁文, 楼大年, 等. 通信卫星灵活载荷技术综述[J]. 空间电子技术,2023,20(3):29-38. DOI: 10.3969/j.issn.1674-7135.2023.03.006
|
[3] |
KOSUGI N, MATSUMOTO D, MACHIDA T, et al. NEC network and sensor systems, ltd. Q/V-band helix TWT for future high throughput satellite uplink applications[C]//IEEE. 2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). Monterey: IEEE, 2020: 125-126.
|
[4] |
ARMSTRONG C M, SNIVELY E C, SHUMAIL M, et al. Frontiers in the application of RF vacuum electronics[J]. IEEE Transactions on Electron Devices,2023,70(6):2643-2655. DOI: 10.1109/TED.2023.3239841
|
[5] |
PI Z Y, KHAN F. An introduction to millimeter-wave mobile broadband systems[J]. IEEE Communications Magazine,2011,49(6):101-107. DOI: 10.1109/MCOM.2011.5783993
|
[6] |
RAPPAPORT T S, SUN S, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: it will work![J]. IEEE Access,2013,1:335-349. DOI: 10.1109/ACCESS.2013.2260813
|
[7] |
CHONG C K, MENNINGER W L. Latest advancements in high-power millimeter-wave helix TWTs[J]. IEEE Transactions on Plasma Science,2010,38(6):1227-1238. DOI: 10.1109/TPS.2010.2041940
|
[8] |
HAO B L, ZHENG L, TIAN Y Y, et al. Millimeter wave helix TWTs’ development for ECM and communication[J]. Journal of Electromagnetic Waves and Applications,2018,32(5):661-669. DOI: 10.1080/09205071.2017.1406825
|
[9] |
BARKER R J, LUHMANN N C, BOOSKE J H, et al. Modern microwave and millimeter-wave power electronics[M]. Hoboken, New Jersey: IEEE, 2005: 825-827.
|
[10] |
郝保良, 黄明光, 刘濮鲲, 等. 理论分析毫米波螺旋线行波管慢波系统导体和介质损耗[J]. 电子与信息学报,2011,33(2):455-460.
|
[11] |
郑丽, 郝保良, 李紫琳, 等. 40~50 GHz宽带螺旋线行波管高频系统研究[J]. 真空电子技术,2021,34(3):76-80.
|
[12] |
GILMOUR A S JR. 速调管、行波管、磁控管、正交场放大器和回旋管[M]. 丁耀根, 张兆传, 译. 北京: 国防工业出版社, 2012.
|
[13] |
电子管设计手册编辑委员会. 中小功率行波管设计手册[M]. 北京: 国防工业出版社, 1976: 104-113.
|
[14] |
王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术,2019,32(2):1-7.
|
[15] |
郭开周. 行波管研制技术[M]. 北京: 电子工业出版社, 2008: 85-91.
|
[16] |
郝保良, 魏义学, 陈永利, 等. 微波功率行波管器件的发展和应用[J]. 真空电子技术,2018,31(1):10-18.
|
[17] |
KUPIDURA D, VASSEUR F, LAURENT A, et al. Thales 45W and 100W Q-band conduction cooled travelling wave tubes[C]//IEEE. 2015 International Vacuum Electronics Conference (IVEC). Beijing: IEEE, 2015: 1-2.
|
[1] | YUE Zhen, XU Xin, LI Shun, LIN Xianqi, YU Yang, LIU Yong. A compact efficient millimeter-wave rectenna[J]. Space Electronic Technology, 2024, 21(3): 56-61. DOI: 10.3969/j.issn.1674-7135.2024.03.008 |
[2] | LIU Min, BIAN Lian, LI Yanxiu, LIU Yu, HUANG Yuanxin, WANG Yaokun, HUANG Kaicheng. Design of a miniaturized dual-frequency antenna for satellite communication[J]. Space Electronic Technology, 2023, 20(6): 75-80. DOI: 10.3969/j.issn.1674-7135.2023.06.010 |
[3] | HE Jin, ZHONG Shichang, ZHU Jie, ZHANG Hongchao. Design of an L-band high-efficiency small-size power amplifier carrier[J]. Space Electronic Technology, 2023, 20(5): 24-28. DOI: 10.3969/j.issn.1674-7135.2023.05.004 |
[4] | WU Qiuyi, CHENG Qi, YANG Yimin. C-band satellite communication anti-5G interference filter miniaturization solution[J]. Space Electronic Technology, 2023, 20(3): 94-99. DOI: 10.3969/j.issn.1674-7135.2023.03.016 |
[5] | WANG Yangjing, XIE Yongjun, XIA Weijuan, SU Pu, WU Peiyu. Research of the outgassing and the influence on spaceborne high-power solid state power amplifier[J]. Space Electronic Technology, 2023, 20(3): 78-83. DOI: 10.3969/j.issn.1674-7135.2023.03.013 |
[6] | JIAO Tangpei, CHEN Peng, FU Hao, CHEN Qianwen. New high power and high efficiency space traveling wave tube power supply[J]. Space Electronic Technology, 2023, 20(3): 73-77. DOI: 10.3969/j.issn.1674-7135.2023.03.012 |
[7] | LI Jiao, HAO Wenqian, ZHANG Huyong, LI Guo. Compact spaceborne Ku-band broadband fan-beam circular polarized antenna[J]. Space Electronic Technology, 2023, 20(1): 35-40. DOI: 10.3969/j.issn.1674-7135.2023.01.006 |
[8] | CHEN Weiwei, YIN Kang, HU Kuan, LI Lei, LI Jing, YANG Fei, WANG Lei. Design on Ku-band 8W solid state power amplifier for satellite application[J]. Space Electronic Technology, 2022, 19(3): 43-47. DOI: 10.3969/j.issn.1674-7135.2022.03.007 |